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Abstract
We propose a general method to construct a partial difference equation which
preserves any time evolution patterns of a cellular automaton. The method is
based on inverse ultradiscretization with filter functions.

PACS numbers: 05.45.Y, 02.10.E, 87.17.-d

1. Introduction

Ultradiscretization is a procedure by which we can transform a discrete equation to a cellular
automaton (CA) [1, 2]. In the procedure, we take a limit of a parameter which exists in the
equation and obtain an equation which is closed under discrete values. Since a solution of
the original equation also depends on the parameter, by taking this limit for the solution, we
simultaneously obtain the analytical expression for the time evolution patterns of the CA.
The patterns thus obtained naturally preserve the features of the original solutions. A typical
example is the soliton CA proposed by Takahashi and one of the authors (JS) [3].

On the other hand, when we try its inverse process—inverse ultradiscretization—we
encounter a serious difficulty [4]. The inverse ultradiscretization is usually performed with the
following steps.

• We rewrite the time evolution rule of a CA to a piecewise linear equation with max and
plus algebra.

• By introducing a parameter ε, we replace max[a, b] by ε log[ea/ε + eb/ε].

For example, in the rule 90 elementary cellular automaton (ECA), the value of the j th site at
time step t + 1 (ut+1

j ) is determined by the values at the previous time step t as [5]

ut+1
j ≡ utj−1 + utj+1 modulo 2. (1)

One of the simplest piecewise linear equations corresponding to equation (1) is

ut+1
j = max[utj−1 − utj+1, u

t
j+1 − utj−1]. (2)
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Hence the corresponding (inverse ultradiscretized) difference equation is obtained as

ut+1
j = ε log[exp[(utj−1 − utj+1)/ε] + exp[(utj+1 − utj−1)/ε]] − ε log 2 (3)

or, replacing exp(utj /ε) with Ut
j ,

Ut+1
j = 1

2

(
Ut

j−1

Ut
j+1

+
Ut

j+1

Ut
j−1

)
. (4)

Here the constant −ε log 2, vanishing in the ultradiscrete limit (ε → +0), is introduced so that
utj ≡ 0 (∀ j, t) remains a solution in the inverse ultradiscretized process. The rule 90 ECA
has a time evolution pattern which shows a typical fractal structure [5]. However, equation (3)
does not have a solution which preserves the fractal structure as long as the parameter ε is
finite [4]. This suggests that equation (2) is not an appropriate piecewise linear equation for
the rule 90 ECA.

In this Letter, we give a universal method of inverse ultradiscretization which preserves
any time evolution pattern of any CA. In section 2, we define a notion of a stable piecewise
linear equation for a CA. In section 3, we present a general method to construct a stable
piecewise linear equation from a given CA. In section 4, we generalize the results obtained
in the previous section with the filtration function and examine the inverse ultradiscretization
of the equation which preserves the original time evolution pattern of the CA as long as the
parameter ε is small enough. Section 5 is devoted to concluding remarks.

2. Stable piecewise linear equation for a CA

Let us consider a CA, each site of which takes L + 1 distinct values (L ∈ Z). Without
loss of generality, we may assume that the set of these values is SL := {0, 1, . . . , L}. We
also assume that the CA is 1(space) + 1(time) dimensional for simplicity. Generalization to
higher-dimensional cases is straightforward. We denote the time evolution rule of the CA by

ut+1
j = F(utj−k+1, u

t
j−k+2, . . . , u

t
j−k+M) (5)

where utj ∈ SL is the value of j ∈ Z site at time step t ∈ Z, and F is a map from
SL × SL × · · · SL︸ ︷︷ ︸

M times

to SL. We consider an equation associated with equation (5):

xt+1
j = KF(x

t
j−k+1, x

t
j−k+2, . . . , x

t
j−k+M) (6)

where xtj ∈ R is the dependent variable of the equation with independent space (j ∈ Z) and
time (t ∈ Z) variables, and KF denotes a piecewise linear map1 from R × R × · · · R︸ ︷︷ ︸

M times

to R.

Definition 1. A piecewise linear map KF : R × R × · · · R︸ ︷︷ ︸
M times

→ R is called a piecewise linear

map associated with the CA given by (5) when it coincides with F on SL, that is,

KF (u
t
j−k+1, u

t
j−k+2, . . . , u

t
j−k+M) = F(utj−k+1, u

t
j−k+2, . . . , u

t
j−k+M) ∀ utj ∈ SL.

For a given CA, there are in principle an infinite number of piecewise linear maps associated
with it. However, in order to obtain a difference equation which shows a similar behaviour to
the CA, the piecewise linear map should satisfy a certain property.

1 By ‘a piecewise linear map’, we denote that the domain of the map is a Euclidean simplicial complex and the map
is linear on each simplex.
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Definition 2. The piecewise linear mapKF associated with the CA given by (5) is called stable
if there exists a positive number δ (0 < δ < 1

2 ) such that if, ∀ j , |utj − xtj | < δ then

|KF(x
t
j−k+1, x

t
j−k+2, . . . , x

t
j−k+M) − F(utj−k+1, u

t
j−k+2, . . . , u

t
j−k+M)| < δ.

From the definition 2, we find that equation (6) preserves any time evolution pattern of the
CA in the sense that, when the initial values of equation (6) approximately take values in SL

with a tolerance of δ, the time evolution pattern of equation (6) coincides with that of (5) if
we round off the dependent variables in the pattern. Therefore we claim that, in the inverse
ultradiscretization, the piecewise linear map obtained in the first step should be stable with
respect to the CA. For example, the right-hand side of equation (2) is a piecewise linear map
associated with the CA (1). However, the map is not stable because it does not satisfy the
condition in the definition 2 at (utj−1, u

t
j+1) = (1, 0). In the next section, we shall show a

method to construct a stable piecewise linear map associated with a given CA.

3. Stable piecewise linear map associated with a CA

We define real functions χ(x : a0, a1) and X(x : a0, a1, a2) as

χ(x : a0, a1) := max[x, a1] − max[x, a0]

a1 − a0
(7)

X(x : a0, a1, a2) := −χ(x : a0, a1) + χ(x : a1, a2). (8)

Here we assume that aj ∈ R (j = 0, 1, 2) and satisfy the inequalities aj < aj+1 (j = 0, 1).
The function X(x : a0, a1, a2) is written explicitly as

X(x : a0, a1, a2) =




0 for x � a0

x − a0

a1 − a0
for a0 < x � a1

a2 − x

a2 − a1
for a1 < x � a2

0 for a2 < x.

(9)

The function X(x : a0, a1, a2) is continuous and piecewise linear with respect to x.
For given data {Ai1,i2,...,in ∈ R} (ij = 0, 1, 2, . . . , Lj j = 1, 2, . . . , n) and {a(j)i ∈ R}

(i = −1, 0, 1, . . . , Lj + 1 j = 1, 2, . . . , n), we define a continuous and piecewise linear
function with n independent variables x1, x2, . . . , xn as

�(x1, x2, . . . , xn : {a(j)i } : {Ai1,i2,...,in})

:=
L1∑
i1=0

L2∑
i2=0

· · ·
Ln∑
in=0

Ai1,i2,...,in min
1�j�n

[X(xj : a(j)ij−1, a
(j)

ij
, a

(j)

ij+1)] (10)

where we assume that a(j)−1 = −∞, a
(j)

Lj+1 = +∞ ∀ j , and a
(j)

i < a
(j)

i+1 ∀ i, ∀j . An example of

the function �(x1, x2, . . . , xn : {a(j)i } : {Ai1,i2,...,in}) is illustrated in figure 1.
The following proposition is proved easily from (9):

Proposition 1.

�(a
(1)
k1
, a

(2)
k2
, . . . , a

(n)
kn

: {a(j)i } : {Ai1,i2,...,in}) = Ak1,k2,...,kn (kj = 0, 1, 2, . . . , Lj ) ∀ j.

(11)
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Figure 1. The function (10) with two independent variables x1, x2 for a
(1)
0 = a

(2)
0 = 0,

a
(1)
1 = a

(2)
1 = 1, a(1)2 = a

(2)
2 = 2, a(1)3 = a

(2)
3 = 3,L1 = L2 = 3 andAi1,i2 = 0 (i1, i2 = 0, 1, 2, 3)

except for A0,0 = A1,1 = A3,3 = 1.

(This figure is in colour only in the electronic version)

Using the function (10), we can construct a stable piecewise linear function associated with
a given CA. First we give a simple example to show the idea of obtaining a stable piecewise
linear function. Let us consider a map M from {0, 1, 2, 3, 4} to {0, 1, 2, 3, 4}:

M : 0 → 0 1 → 2 2 → 4 3 → 2 4 → 0. (12)

A natural piecewise linear map associated with M would be F
(0)
M , which is defined as

xt+1 = F
(0)
M (xt )

:=
{

2xt for 0 � xt � 2

2 − 2xt for 2 < xt � 4.
(13)

However the map F
(0)
M is not stable in the sense of the definition 1. To obtain a stable piecewise

linear map FM , it is sufficient to impose the following condition on FM :

• FM is a continuous piecewise linear equation and

FM(x) =




0 for 0 � x � �

2 for 1 − � � x � 1 + �

4 for 2 − � � x � 2 + �

2 for 3 − � � x � 3 + �

0 for 4 − � � x � 4.

(14)

Here 0 < � < 1/2. It is obvious that the above condition uniquely determines the map which
is a piecewise linear stable map associated with M . We generalize the above construction to
CAs. As in section 2, we consider a (1 + 1)-dimensional CA which takes values on SL. The
time evolution rule is expressed as

ut+1
j = F(utj−k+1, u

t
j−k+2, . . . , u

t
j−k+M) (15)
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where utj is the dependent variable on j th site at time step t . We define 2L points in the interval

I := [0, L] with a positive parameter � (0 < � < 1
2 ) as

pj =
[
j + 1

2

]
+ (−1)j� (16)

where [·] denotes the largest integer which does not exceed ‘·’. Hence, we have

p0 = � p1 = 1 − � p2 = 1 + � p3 = 2 − �

. . . p2L−2 = L − 1 + � p2L−1 = L − �.

We also define that p−1 := −∞ and p2L := +∞. With these pj , we further define a piecewise
linear function with M independent variables KF : R × R × · · · × R︸ ︷︷ ︸

M times

→ R, as

KF (x1, x2, . . . , xM) = �(x1, x2, . . . , xM : {a(j)i } : {Ai1,...,iM }) (17)

where a
(j)

i = pi , Lj = 2L − 1 (i = −1, 0, 1, . . . , 2L, j = 1, 2, . . . ,M) and

0 < p0 < 1
2 < p1 < 1 < p2 < 3

2 < p3 < 2 < p4 < 5
2 < p5 < · · ·

< p2L−2 < L − 1
2 < p2L−1 < L.

Denoting by [[·]] the integer to which ‘·’ is rounded, and noticing that [[p2m−1]] = [[p2m]] = m,
we set

Ai1,i2,...,iM = F([[a(1)i1
]], [[a(2)i2

]], . . . , [[a(M)
iM

]])

= F([[pi1 ]], [[pi2 ]], . . . , [[piM ]]).

Then, from proposition 1, we find the following. In the difference equation

ut+1
j = KF(u

t
j−k+1, u

t
j−k+2, . . . , u

t
j−k+M) (18)

the function KF is a continuous and piecewise linear function on R × R × · · · × R︸ ︷︷ ︸
Mtimes

. It takes

the same values not only on the lattice SL × SL × · · · × SL︸ ︷︷ ︸
Mtimes

but also in the � neighbourhood

as those of F(utj−k+1, u
t
j−k+2, . . . , u

t
j−k+M). Hence we have:

Theorem 1. The function KF (17) gives a stable piecewise linear map associated with the
CA (15).

Since the time evolution rule F is arbitrary, we can construct a stable piecewise linear
map for any CA. Extension to higher-dimensional CAs is straightforward. Here we give a few
examples.

For the ECAs, we consider four points on R

p−1 = −∞ p0 = � p1 = 1 − � p2 = +∞.

We define

X0(x) := X(x : p−1, p0, p1)

= X(x : −∞,�, 1 − �)

= −χ(x : −∞,�) + χ(x : �, 1 − �)

= −0 +
max[x, 1 − �] − max[x,�]

(1 − �) − (�)
.
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The function X0(x) is continuous, piecewise linear and takes its maximum value unity for
x � � and becomes zero for x � 1 − �. Similarly, we define

X1(x) := X(x : p0, p1, p2)

= X(x : �, 1 − �,+∞)

= −χ(x : �, 1 − �) + χ(x : 1 − �,+∞)

= −max[x, 1 − �] − max[x,�]

(1 − �) − (�)
+ 1.

The function X1(x) is also continuous, piecewise linear and takes zero for x � � and unity
for x � 1 − �.

With these functions, KF is written as

KF (x, y, z) =
1∑

i=0

1∑
j=0

1∑
k=0

Ai,j,k min[Xi(x),Xj (y),Xk(z)]. (19)

If the time evolution rule of an ECA is given by

ut+1
n = FECA(u

t
n−1, u

t
n, u

t
n+1)

then the coefficientsAi,j,k are expressed asAi,j,k = FECA(i, j, k), and we find that the piecewise
linear difference equation for the ECA is given by

ut+1
n = KF(u

t
n−1, u

t
n, u

t
n+1)

=
1∑

i=0

1∑
j=0

1∑
k=0

FECA(i, j, k)min[Xi(u
t
n−1),Xj (u

t
n), Xk(u

t
n+1)]. (20)

For the game of life (a typical two-dimensional CA) [6], we have the piecewise linear
difference equation

ut+1
n,m =

1∑
i1=0

1∑
i2=0

1∑
i3=0

· · ·
1∑

i9=0

FLG(i1, i2, i3, . . . , i9)

× min[Xi1(u
t
n−1,m−1),Xi2(u

t
n−1,m),Xi3(u

t
n−1,m+1), . . . , Xi9(u

t
n+1,m+1)] (21)

where ut+1
n,m = FLG(u

t
n−1,m−1, u

t
n−1,m, u

t
n−1,m+1, . . . , u

t
n+1,m+1) denotes the time evolution rule

of the game of life. More detailed results of (21) are discussed in [7].
As the final example of this section, we consider a CA which takes three distinct values,

zero, unity and two. We assume that the time evolution rule of the CA is given by

ut+1
n = Ftri(u

t
n−1, u

t
n, u

t
n+1).

From the general arguments stated above, we set

p−1 = −∞ p0 = � p1 = 1 − �

p2 = 1 + � p3 = 2 − � p4 = +∞.

The following four piecewise linear functions are necessary for constructing the piecewise
linear map.

X0(x) := X(x : p−1, p0, p1)

= X(x : −∞,�, 1 − �)

= −χ(x : −∞,�) + χ(x : �, 1 − �)

= −0 +
max[x, 1 − �] − max[x,�]

(1 − �) − (�)
.
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X1(x) := X(x : p0, p1, p2)

= X(x : �, 1 − �, 1 + �)

= − χ(x : �, 1 − �) + χ(x : 1 − �, 1 + �)

= − max[x, 1 − �] − max[x,�]

(1 − �) − (�)
+

max[x, 1 + �] − max[x, 1 − �]

(1 + �) − (1 − �)
.

This function vanishes for x � � and 1 + � � x, and takes its maximum value unity at
x = 1 − �.

X2(x) := X(x : p1, p2, p3)

= X(x : 1 − �, 1 + �, 2 − �)

= − χ(x : 1 − �, 1 + �) + χ(x : 2 − �, 1 + �)

= − max[x, 1 + �] − max[x, 1 − �]

(1 + �) − (1 − �)
+

max[x, 2 − �] − max[x, 1 + �]

(2 − �) − (1 + �)
.

This function vanishes for x � 1 − � and 2 − � � x, and takes its maximum value unity at
x = 1 + �.

X3(x) := X(x : p2, p3, p4)

= X(x : 1 + �, 2 − �,+∞)

= −χ(x : 1 + �, 2 − �) + χ(x : 2 − �,+∞)

= −max[x, 2 − �] − max[x, 1 + �]

(2 − �) − (1 + �)
+ 1.

The difference function is given by

ut+1
n = KF(u

t
n−1, u

t
n, u

t
n+1)

=
3∑

i=0

3∑
j=0

3∑
k=0

Ftri([[pi]], [[pj ]], [[pk]])min[Xi(x),Xj (y),Xk(z)].

Note that [[p0]] = 0, [[p1]] = 1, [[p2]] = 1, [[p3]] = 2.

4. Generalization and inverse ultradiscretization

In the previous section, we have proposed a method to construct a stable piecewise linear
difference equation associated with a CA. This method can be applied to any kind of CA.
However, it is not a unique method to obtain a stable piecewise linear equation. In this section,
we introduce a filter function "(x) and generalize the above method. Let us consider (L + 1)-
valued CAs as in the previous sections. We also assume that its time evolution is given by (5).
The function "(x) is continuous, piecewise linear on R and defined by

"(x) :=
L∑

j=0

Xj(x) (22)

where

Xj(x) :=




0 for x � j + �−
j

x − j − �−
j

�+
j − �−

j

for j + �−
j < x � j + �+

j

1 for j + �+
j < x

(23)
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or, equivalently,

Xj(x) = max[0, x − j − �−
j ] − max[0, x − j − �+

j ]

�+
j − �−

j

. (24)

Here �−
j , �

+
j (j = 0, 1, . . . , L) are positive parameters which satisfy

0 < �−
j < 1

2 < �+
j < 1 (j = 0, 1, . . . , L).

Next we consider a piecewise linear map GF associated with the CA. The map GF is not
necessarily stable. An example is given by � (10). We set a(j)i = i ∀j (i = 0, 1, . . . , L) and
Ai1,i2,...,in = F(i1, i2, . . . , in). Then we have

GF(x1, x2, . . . , xn) = �(x1, x2, . . . , xn : {a(j)i } : {Ai1,i2,...,in})

=
L∑

i1=0

L∑
i2=0

· · ·
L∑

in=0

F(i1, i2, . . . , in) min
1�j�n

[X(xj : a(j)ij−1, a
(j)

ij
, a

(j)

ij+1)]. (25)

The stable piecewise linear function is obtained by composition of GF and ", namely,

KF (x1, x2, . . . , xn) = (GF ◦ ")(x1, x2, . . . , xn)

= GF("(x1),"(x2), . . . , "(xn)) (26)

or

K ′
F (x1, x2, . . . , xn) = (" ◦ GF)(x1, x2, . . . , xn)

= "(GF (x1, x2, . . . , xn)). (27)

Clearly, the function considered in the previous section is a special case of (26). Note that
" ◦ GF and GF ◦ " are essentially the same as dynamical maps. (Expression (26) is slightly
more general, since we can introduce a different kind of filter function " for each xj .)

Finally we briefly discuss inverse ultradiscretization. Rigorous examination for
some concrete CAs will be performed in a forthcoming paper [8]. Since min[a, b] =
− max[−a,−b], we have only to replace max with some appropriate continuous function.
For soliton cellular automata, the relation

max[a, b] = lim
ε→+0

ε log(ea/ε + eb/ε) (28)

is found to be useful because the soliton solutions are expressed with linear combinations of
exponential functions. However, there are many limiting procedures to yield max[a, b], such
as

max[a, b] = lim
ε→+0

a +
b − a

1 + exp[(a − b)/ε]
(29)

and, for a, b > 0,

max[a, b] = lim
N→+∞

(
aN + bN

2

) 1
N

. (30)

(It may be interesting to note that the function f (N : a, b) := ( a
N+bN

2 )
1
N is an increasing

function of N and f (−∞ : a, b) = min[a, b], f (0 : a, b) = √
ab.) We do not know which

is the best replacement. It depends on the case. However, if the parameter is close enough to
the limiting value, the difference equation obtained from the stable piecewise linear equation
shows a similar pattern to that of the original CA.
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5. Conclusion

In this paper, we have defined a stable piecewise linear map associated with a given CA and
discussed its importance in inverse ultradiscretization. We have presented a general method to
construct a stable piecewise linear map from a CA. Inverse ultradiscretization of the map shows
a similar time evolution pattern to that of the CA. These patterns are stable against fluctuations
as long as the parameter ε is small enough. We have also given a general formalism to construct
a stable map with the filter functions. Concrete examples for the elementary CA and the game
of life will be reported elsewhere with detailed analysis [7, 8].

The aim of our research is to answer Wolfram’s ninth problem, ‘what is the correspondence
between cellular automata and continuous systems?’ [9]. Several contributions to this problem
have been reported. A system of ten coupled nonlinear partial differential equations has been
proposed to simulate two-dimensional nine-neighbour square lattice CAs [10]. Since the C∞

bump functions are used in this approach, the resulting partial differential equations look
fairly artificial, though this approach can be applicable to an arbitrary CA. For so-called
integrable cellular automata, ultradiscretization successfully gives a direct link between CAs
and integrable partial differential equations. However, for nonintegrable systems, we have
not established a direct link with ultradiscretization. For reaction–diffusion equations, the
lattice-gas cellular automata can lead to discrete lattice Boltzmann equations and, by coarse
graining and a scaling procedure, can produce partial differential equations [11]. In general,
however, dynamics of the resulting equations can be somewhat different from the dynamics of
the corresponding lattice-gas cellular automata. It would be significant if we could establish
a unified approach to establish relations between CAs and partial differential equations. We
hope that the notions and the methods presented here will make some contribution to solving
the ninth problem.

The authors are grateful to Dr Tomonori Watanabe for helpful discussions. This paper is
partially supported by a Grant-in-Aid from the Japan Ministry of Education, Science and
Culture.
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